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A numerical method for investigating the possibility of blow-up after a finite time is 
introduced for a large class of nonlinear evolution problems. With initial data analytic in the 
space variable(s), the solutions have for any t > 0 complex-space singularities at the edge of 
an analyticity strip of width S(t). Loss of regularity corresponds to the vanishing of 6(t). 
Numerical integration by high resolution spectral methods reveals the large wavenumber 
behavior of the Fourier transform of the solutions, from which b(t) is readily obtained. Its 
time evolution can be traced down to about one mesh length. By extrapolation of 6(t), such 
numerical experiments provide evidence suggesting finite-time blow-up or all-time regularity. 
The method is tested on the inviscid and viscous Burgers equations and is applied to the one- 
dimensional nonlinear Schrodinger equation with quartic potential and to the two-dimensional 
incompressible Euler equation, all with periodic boundary conditions. In the latter case 
evidence is found suggesting that existing all-time regularity results can be substantially shar- 
pened. 

I. INTRODUCTION 

Proving all-time regularity or occurence of a singularity for nonlinear partial 
differential equations is often a mathematical challenge. This is especially true for 
problems with several space variables: it is still unknown for example whether the 
solution of the three-dimensional Euler equation for an incompressible fluid remains 
smooth for all times when it is so initialy. Even in one dimension, there are still a few 
open problems, e.g., the nonlinear Schriidinger equation with a sufficiently high 
nonlinearity in a periodic domain. 

In various fields of nonlinear dynamics such as transition to chaos or dynamics of 
coherent structures, the computer, used in a heuristic mode, has greatly augmented 
our understanding of the mathematics [32]. Regularity problems are also amenable to 
numerical experimentation. Two different kinds of methods have been used up to 
now: Taylor series expansions in time and direct numerical simulations. 
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Methods of the first type have been introduced in critical phenomena [ 151 and are 
now employed in fluid dynamics [6, 23-251. The solution of the problem is Taylor 
expanded in time around t = 0. The coefficients of the expansion are obtained recur- 
sively from the initial conditions. When the initial conditions are described by a finite 
number of rational Fourier modes, the accuracy of the coefftcients is limited by 
round-off errors only. Several tens of coefficients may be computed in this way. 
Taylor series for various spatial integral norms of the derivatives (Sobolev norms or 
p-enstrophies), depending only on time, are generated from the Taylor series of the 
solution. The singularities of these norms are searched numerically at both real and 
complex times. The method is very reliable when the radius of convergence of the 
series is limited by a real-time singularity [23]. When it is limited by complex 
singularities, analytic continuation is required. The numerical implementation, which 
generally uses PadC approximants, may then be rather tricky [6, 241. 

In methods of the second type, mainly used in fluid mechanics, the problem is 
solved numerically by time-marching techniques. Spectral methods are especially well 
adapted to problems with periodic boundary conditions. In addition to their high 
accuracy and the simplicity of their implementation, these methods preserve the 
continuity of the solution and of its derivatives of any order. Furthermore, the 
precision depends only on the resolution. Various quantities can yield informations 
on the regularity of the solution. One can, for example, consider Sobolev norms [27], 
but small truncation errors on the energy spectrum may lead to significant errors on 
norms of high index. One may also examine directly the analyticity properties of the 
solution. This is the approach used in this paper for solutions initially analytic in the 
space variables. 

The idea of the method is to derive the width of the analyticity strip, i.e., the 
distance to the real domain of the nearest singularity, from the asymptotic behavior 
of the Fourier transform. This distance is only weakly dependent on the truncation 
wavenumber k,,, if the Fourier modes retained for the analysis are sufficiently large 
to describe the asymptotic regime, but far enough away from k,,,. An extrapolation 
in time of the motion of these singularities yields predictions on regularity properties 
of the solution. Different situations may arise. 

If a singularity reaches the real domain after a finite time t,, the solution looses 
analyticity and becomes singular. A well-known example is the inviscid Burgers 
equation (Section IIIA). Numerical evidence for a similar behavior is obtained in this 
paper for the nonlinear Schrodinger equation with quartic potential (Section IV). 

If the width of the analyticity strip is bounded away from zero, the solution is 
uniformly analytic (e.g., the viscous Burgers equation; Section IIIB). In this case, the 
minimum of the analyticity strip can be viewed as the smallest excited scale of the 
system. 

A third possibility is that the system develops smaller and smaller scales, the 
solution remaining smooth for all times. This occurs when the width of the analyticity 
strip goes to zero without vanishing (e.g., exponential decay). Numerical simulations 
indicate that the Euler equation (Section V) and the MHD equation [ 131 in two 
dimensions display this kind of behavior. A one-dimensional example is given in [6]. 
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It can be viewed as the advection of a passive scalar by a time-independent velocity 
field with a sinusoidal spatial dependency. 

A general discussion of the relation between complex singularities and small scales 
properties of a flow can be found in [ 12, 141. 

II. IMPLEMENTATION OF THE NUMERICAL METHOD 

We first recall the relation between the analytic properties of a function of one 
variable, defined in IR or in a periodic domain, and the large wavenumber behavior of 
its Fourier transform. 

Consider an analytic function u(z) with singularities at complex location zj, in the 
neighborhood of which it behaves as 

u(z) - (z - zjp (2.1) 

& is assumed not to be a positive integer). The behavior of the Fourier transform for 
k -+ +co is governed by the singularity of the upper half-space closest to the real 
domain that is not a multiple pole; if this singularity is located at z* =x* + id and 
has an exponent ,u, one has 

$, - lkl-(‘+” e-kaeix,k, k-++oo. (2.2) 

A derivation of this property can be found in 17, p. 2551. It requires that u(z) be 
growing not faster than an exponential as Iz) + co and that the singularities be 
isolated points. Note that when several singularities are relevant asymptotically, ] G, ( 
may display an oscillatory behavior. 

Equation (2.2) shows in particular that for a function of one variable, the width of 
the analyticity strip is equal to the logarithmic decrement of the Fourier transform at 
large wavenumbers: 

In lVIk] w 6k, k++coo. (2.3) 

This property is not easily extended to functions of several variables. It is, however, 
easy to derive the following estimate [ 11: 

If a 2n-periodic function V(Z) is analytic in the strip YP = (] Im z] < p} and 
continuous in the closure of YO, the Fourier coefficients satisfy 

1 G,I < Me-lk’“, (2.4) 

where M = supYD ] u ]. Reciprocally, if (2.4) holds, the function v is analytic in the 
strip YP. 

Slightly weaker results hold for the angle average “energy spectrum,” 

E(K) = 2 I WI’, 
K<k<K+ I 

(2.5) 
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because the angular summation can introduce algebraic prefactors. If u is analytic in 
LYD, then 

E(K) < Ce-2’P-E)K, P-6) 

where E is an arbitrarily small positive number. Reciprocally, if 

E(K) Q Cc-2p*, 

then analyticity is insured in Ppe8. 

(2.7) 

Let us now turn to the implementation of the above properties in the context of 
numerical simulations by spectral (or pseudospectral) methods. These methods 
preserve the large wavenumber behavior of the Fourier transform provided the 
resolution is large enough. For a function of one variable which is analytic in a strip 
of width 6, the amplitude of the Fourier modes decreases faster than e-6k. Hence, 
when the series is truncated at a maximum wavenumber k,,,, the truncation error is 
bounded by 

C ceeSk=c l”y:8. 
Ikl>k,,, 

(2.8) 

The function will thus be accurately represented by the truncated Fourier series 
provided k,,, is larger than l/S, or in other words, provided the logarithmic 
decrement is large compared to the mesh size. 

As the numerical integration is carried on in time, either the logarithmic decrement 
is bounded away from zero by &, > 0 or it goes on decreasing. In the former case, 
the integration can be carried on for arbitrarily long times, provided the mesh size is 
substantially smaller than Bmin. In the latter case, the calculation should be stopped 
when the logarithmic decrement becomes of the order of the mesh size, because the 
uncertainty on the position of the closest singularity is then of the same order than its 
distance to the real domain. Then, from the available numerical data, one tries to 
extract a law describing the time dependence of the logarithmic decrement. If the 
spatial resolution is large enough, this law may be representative of the asymptotic 
behavior of s(t) and can be extrapolated to t -+ 03 or t-, t,, depending on the 
situation. 

III. Two TEST PROBLEMS: 
THE INVISCID AND VISCOUS BURGERS EQUATIONS 

A. The inviscid problem 

The equation reads 

au Bu ~+uax=o’ u(x, 0) = u,(x), x E [O, 2A]. (3.1) 
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We assume the analytic initial condition 

u,(x) = -sin x. (3.2) 

With this choice of initial condition, the solution develops a shock which appears at 
time r = 1 in x = 0. The Burgers equation implies that there is conservation of the 
velocity along the trajectories. Therefore in Lagrangian coordinates, the solution has 
the simple representation 

u(x@, 0, 0 = %I@> (3.3) 

x(a, t) = a + tu,(a). (3.4) 

Here, a denotes the initial position of a fluid particle located in x at time t. This 
solution is easily continued to the complex domain by considering complex values A 
of the initial position. At time t, the position of a fluid particle located initially in A is 

z(A, t) = A + &(A). (3.5) 

The singularities of U(Z, t) are located at the points where trajectories intersect each 
other. They are thus given by the zeros of az/aA. For initial condition (3.2), there are 
two complex conjugate singularities z* = +iS with 

&t)=cosh-‘(l/t)-tsh[cosh-‘(l/t)]. (3.6) 

These singularities reach the real axis in x* = 0 at time I, = 1. The nature of the 
singularities is obtained by Taylor expanding the velocity around the singularity 
points [ 111. As long as 6(r) # 0, 

u(z, t) - (z - z*(t))? (3.7) 

When s(t) vanishes, which occurs at I = t,, 

u(x*,t)- (x-x*p3. (3.8) 

As a consequence, the large wavenumber behavior of the Fourier transform of the 
solution is given by 

1 uk - k-31Ze-S’t’k 
3 t<t,, (3.9) 

1 uk - k-‘13, t=t*. (3.10) 

Remark. The kp413 power law appears already before t*. For t < t, the Fourier 
transform of the solution is given by (3.9) for k + l/s(t). For 1 < k < l/&t), it is of 
the form (3.10) [ 111, because this range of wavenumbers corresponds to a resolution 
for which the two complex conjugate singularities cannot be separated. 
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We now show that these properties can be obtained numerically. Equation (3.1) 
with initial condition (3.2) has been integrated using a dealiased pseudospectral 
method with a maximum wavenumber k,,, = 128. Time stepping was done by a 
leap-frog scheme with mixing of even and odd time steps every 20 time steps [ 171. 
The time step is 10e3. The Fourier transform of the solution is plotted at various t in 
Fig. la (linear-log scales) and Fig. lb (log-log scales). At early times, the exponential 
behavior occupies the major part of the wavenumber range. At later times, a power 
law behavior appears at small k and finally covers the whole wavenumber range at 
the singularity time. The upturn observed close to k,,, comes from truncation errors. 

More quantitative information is obtained by assuming for the Fourier transform 
of the solution an expression containing an exponential with a power law prefactor: 

ck(t) = C(t) k-n(f)e-S(f)k, (3.11) 

The adjustable parameters C, a, 6 have been calculated with a least-squares method. 
Table I shows the values of a and 6 for various values of time. Only the modes that 
have an amplitude larger than the level of the round-off error (-10-13) have been 
retained for the fit. There is a very good agreement between the exact and computed 
values of the logarithmic decrement as long as 6 is larger than the mesh size. A two 
or three digit accuracy is achieved. For times t < 0.6, a tit in the range 5 < k < 100 
gives an exponent Q close to 1.5 for the prefactor. During this period of time, the 
truncation errors are negligible. For longer times, the exponent decreases 
continuously to 1.37. This is due to the extension of the kP413 power law to large 
wavenumbers (cf. the remark above). To obtain numerically the exponent of this 
power law at times close to the singularity (0.9 Q t < 1), it is necessary to eliminate 
the exponential tail from the range of wavenumbers used for the lit. At t z t* = 1, 
this tail has disappeared but the highest wavenumbers must now be excluded because 
of truncation errors. With a range limited to 2 < k < 30, we have obtained values 
closed to 4 (see Table I, fifth column). 

B. The viscous problem 

The viscous version of (3.1) with the same initial condition reads 

au au a2u ~+U~=V~ 2, uo(x) = -sin x, x E [O, 27c]. (3.12) 

For small v, the solution develops a shock with a hyperbolic structure of the form 

u(x) w - $tanh(xH/4v). (3.13) 

The shock strength H is proportional to t-l. Analytic continuation of the tanh shows 
that U(Z) has simple pole singularities at 

z, = rti(4v/H)(n + ;) n. (3.14) 
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FIG. la. Fourier transform of the solution of the inviscid Burgers equation in linear-log scales at 
equally spaced times between t = 0.05 and I = 0.9 in steps of 0.05. and between t = 0.91 and I = I in 
steps of 0.01. 
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FIG. lb. Same as Fig. la in log-log scales; u = In 30; b = In 100. 



TRACING COMPLEX SINGULARITIES 145 

TABLE I 

Inviscid Burgers Equation 

t 

Logarithmic 
decrement 
given by 

(3.6) 

Fit of the numerical data with (3.11) 

5<k<lOO 2<k<30 

s cl a 

0.15 1.596 
0.30 0.920 
0.45 0.544 
0.60 0.299 
0.75 0.134 
0.90 0.313 E-l 
0.92 0.221 E-l 
0.94 0.142 E-l 
0.96 0.768 E-2 
0.98 0.269 E-2 
1.0 0 

1.591 
0.918 
0.542 
0.298 
0.134 
0.316 E-l 
0.225 E-l 
0.147 E-l 
0.799 E-2 
0.252 E-2 
0.173 E-3 

1.48 - 
1.48 - 
1.48 - 
1.48 - 
1.47 - 

1.43 1.38 
1.42 1.37 
1.41 1.36 
1.39 1.35 
1.38 1.34 
1.37 1.33 

The asymptotic (k + co) behavior of the spatial Fourier transform of the velocity is 
derived in [ 141 from the positions of the complex singularities. Two regimes can be 
distinguished, 

an inertial range: 

1 << k < H/v, where t$ - k-‘, 

a dissipation range: 

k s Hfv, where r&-e (- 2nvklH) 

In the dissipation range, only the singularities closest to the real domain are relevant 
to leading order. In the inertial range, all the poles give a contribution and the k- ’ 
behavior is obtained by summing a geometric series. 

To solve (3.12) numerically, we have used a leapfrog scheme for the nonlinear 
term and a Crank-Nicolson scheme for the viscous term. We used v = 5 x 10P2. The 
Fourier transform of the solution is plotted in Fig. 2a (log-log scales) and in Fig. 2b 
(linear-log scales) at various times t > 2. Figure 2a shows a power law behavior at 
small wavenumbers and an exponential decay at large wavenumbers. This exponential 
is clearly seen in Fig. 2b. Table II gives the results of a lit of the Fourier transform 
with a function C(t) k-acl’e-““‘k in two ranges of wavenumbers, 2 < k < 10 and 
15 < k < 120. In the first range, we can see the k-l regime up to t z 2. Later, the 
behavior becomes exponential. In the second range of wavenumbers, a is very small, 
indicating that the complex singularities are simple poles. The logarithmic decrement 
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Ink 

FIG. 2a. Fourier transform of the solution of the viscous Burgers equation (V = 0.05) in log-log 
scales at equally spaced times between t = 2 and t = 4.8 in steps of 0.4. 
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FIG. 2b. Same as Fig. 2a in linear-log scales. 
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TABLE II 

Viscous Burgers Equation 

a 

t 2,</c<lO 15<k< 120 

0.8 1.2 2.3 E-2 
1.2 1.1 1.0 E-2 
1.6 1.0 6.8 E-3 
2.0 0.96 4.4 E-3 
2.4 0.91 2.1 E-3 
2.8 - -1.3 E-4 
3.2 - -2.8 E-4 
3.6 -3.5 E-3 
4.0 -1.4 E-3 
4.4 - 1.8 E-3 
4.8 - 2.3 E-4 

1.0 

__.______ i _______..._,_ - ________ .i-- -------..,--.-.-----l ___ 
0. 

0. 1 2 t 3 L 5 

FIG. 3. Logarithmic decrement versus time for the viscous Burgers equation (v = 0.05). The dashed 
line shows the mesh size (2x/256). 
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as a function of time is plotted in Fig. 3. After decreasing to a minimum, it increases 
linearly in time in agreement with (3.15b). 

IV. THE NONLINEAR SCHR~DINGER EQUATION WITH 
QUARTIC POTENTIAL 

The quartic nonlinear Schriidinger (NLS) equation reads 

. aw a2w 
*z+ ax2 -+ ly14 w=o. 

This equation preserves the L2-norm and the so called “energy” 

(4.1) 

(4.2) 

The problem in R has been considered in [ 16,331. The solution cannot remain 
smooth for all time if the energy Z’ is negative and the initial value of the variance 

P-(O) = 1 x2 1 lpo(x)12 dx (4.3) 

finite. This is a consequence of the estimate 

$- (t) < w. (4.4) 

Scaling laws for the singularity, which corresponds to a blow-up of the sup-norm of 
the solution, were proposed in [33]. For periodic boundary conditions there is no 
proof of existence of a singularity because estimate (4.4) does not hold and we have 
been led to investigate the singularity problem numerically. 

We have integrated (4.1) with initial condition 

y,(x) = 3.72 sin(2rrx), (4.5) 

which gives Z c -2.9. We have used the temporal scheme [9] 

iv (4.6) 

which exactly preserves both the L2-norm and the energy op4 The scheme being 
implicit, (4.6) is solved by an iterative procedure of the kind described in [26]. We 
used a variable time step (10e4 for 0 < t < 0.35 X 10e2; 0.5 x 10v4 for 
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0.35 x lo-* < t < 0.625 x lo-*; 0.25 x 10e4 for 0.625 x lo-* < t < 0.6625 x lo-*; 
0.125 x 10e4 for 0.6625 x lo-* < t < 0.67125 x lo-*). 

The amplitude and the phase of the solution in the physical space are represented 
in Figs. 4a and 4b. The amplitude has a peaked shape which becomes more and more 
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‘p 

3.14 - 

1.57 

0. 

FIG. 4b. Phase of the solution of the NLS equation at the same times as in Fig. 4a. 

situation, g(t) = o[f*(t)], the nonlinear term ] w4 1 w would be negligible compared to 
the Laplacian of the amplitude. We shall see that the numerical data are compatible 
with ansatz (4.8). 

The behavior of the phase ) around x’= 0 can be represented by a parabola. Using 
(4.7) and (4.8), the real part of the Schrtidinger equation may be written as 

a 
Ei IL 

34 1 d(t) -----J] !P (5) 1 =o. 
aif 2 g(t) (4.9) 

Equation (4.9) shows that the term in the braces is independent of 1 It is zero at 
x’= 0 because !P is finite and a#/~%= 0 (w is an even function of x3; hence it is zero 
for all z?, and around x’= 0 the phase may be represented by 

(4.10) 
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Hence, the behavior of the Fourier transform of I&, t) at large wavenumbers is deter- 
mined by the analyticity properties of the amplitude profile II/. In particular, the 
logarithmic decrement s(t) will be proportional to g(t). 

The odd Fourier modes are plotted in Fig. 5 (linear-log scales). The even modes 
are zero because of a symmetry of the problem. The behavior is clearly exponential at 
large wavenumbers. The odd modes have been fitted by 

1 gk(t)l - C(t) k-a(‘)e-d(t)k. (4.11) 

The maximum I+V~ of the amplitude is plotted versus [s(t)] - “* at different times in 
Fig. 6. The linear variation, which occurs after a transient period of time, is in 
agreement with (4.8). Table III shows that the product I&S is constant within 2%. 

A value close to 0.5 is obtained for a (see table III); this corresponds to a complex 
singularity 

ly(z, t) - (z - z*) - 1’2. (4.12) 

The nature of the singularity can also be derived from (4.1) by noticing that near a 
point where the solution is of the form (z -z*) @, the time derivative is negligible 

2n.k 

FIG. 5. Amplitude of the Fourier transform of the NLS equation from I x lo3 = 0.5 to 3.5 in steps 
of 0.5, from 3.75 to 6.25 in steps of 0.25, from 6.375 to 6.625 in steps of 0.125, and from 6.6875 to 
6.7125 in steps of 0.03175. 
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FIG. 6. Amplitude whl at the maximum plotted versus the lo8arithmic decrement 6 to the power - f 
for the NLS equation at the same times as in Fig. 5. 

TABLE III 

Nonlinear Schrijdinger Equation 

t a 102 

0.375 9.12 0.48 
0.425 9. 0.52 
0.475 8.88 0.52 
0.525 8.88 0.50 
0.575 8.83 0.50 
0.625 8.84 0.49 
0.6375 8.73 0.51 
0.65 8.79 0.49 
0.66625 8.88 0.47 
0.66875 8.95 0.47 

!a a 
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FIG. 7. Logarithmic decrement 6 and inverse of the maximum amplitude y+., versus time for the 
NLS equation. The dashed line shows the mesh size. 

when compared to the Laplacian. A value lu = -0.5 is obtained by balancing the 
nonlinear and dispersive terms. 

The temporal evolutions of the decrement 6 and of the inverse of the maximum 
amplitude v/~ are plotted in Fig. 7. Note the inflection point on the 6 curve. A high 
resolution (k,,, = 5 12) is necessary to reach a reasonably asymptotic regime. Figure 
7 strongly suggests that after a finite time 6 vanishes and wr,, blows up. 

The blow-up of v can be described quantitatively by extracting the time depen- 
dence of the scaling factorsf(t) and g(t) from the numerical data. We have assumed 
time dependences of the form 

vhl(~) w-(t) = co* - v., d(t) a g(t) = C’(t; - t)A’. (4.13) 

The exponents 1 and A’ were obtained in the following way: For different choices of 1 
and I’, wh”’ and 6”” were fitted by linear laws using a least-squares method. Only 
the last 8 points, corresponding to the time interval 6.25 X 10e3 < t < 6.7125 X 10e3, 
were kept. Figure 8 shows the dispersions around these lines versus l/J and 2/I’. The 
positions of the minima differ by about 1% from the value 1= A’/2 = 4/7 E 0.57 
obtained by Zakharov and Synakh from an asymptotic analysis of the full space 
problem. When A = #I’/2 is in the range (0.56-0.58), the singularity times t, and t& 
differ by at most 0.1%. Figure 9 displays straight-line fits of al’*’ and yilln with I = 



1.0 

0.5 

1.5 
0. 

1.6 1.7 ,,x 1.8 1.9 2.0 

2/A' 

FIG. 8. Dispersion upM and u8 of 1 Y;“’ - C(f, - f)l and 16”” - C’(f: - t)] versus I/n and 2/A’ in 
the time interval 6.25 x 10e3 < t < 6.7125 x 10m3. The dashed line shows the value L = 4/7. 

1.00 

A & 764 

A 

0.50 
:\I 

0.005 0.006 

FIG. 9. Nonlinear Schriidinger equation: Vi” and a7j4 
(-) least-squares fit for ,I= 5 and 1’ = $. 

versus time, (A) and (*): numerical data; 

154 
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I I : I 
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FIG. 10. Amplitude and phase of the NLS equation at time t = 6.7125 X lo--‘. The dashed line is a 
parabolic fit of the phase according to (4.10) with g(t)/g(t) = $ (t* - t) - ‘. The vertical dotted lines 
indicate the range of validity. 

A’/2 = 4/7. Figure 10 shows the phase fitted by the parabola (4.10) with g(t)/g(t) = 
4/7 (t.+ - t)-’ at time 6.7125 x 10W3. Note that the totality of the amplitude peak 
falls inside the range of validity of (4.10). 

Our numerical results are compatible with ansatz (4.8) and suggest that the 
nonlinear Schrodinger equation with quartic potential and periodic boundary 
conditions blows up in a finite time when the energy is negative with the same scaling 
laws as those of the full-space problem. 
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V. TWO-DIMENSIONAL EULER EQUATION 

In this section, we apply a multi-dimensional extension of the method presented in 
Section II to the two-dimensional Euler equation with periodic boundary conditions: 

au 
at+“.vu=-vp, v*u=o, 

u(x, 0) = u&)9 x E [ 0,2x] 2. (5.1) 

Existence for all times of a classical solution has been known for a long time [ 19,20, 
3 11. It results from the conservation of vorticity, w = curl U, along the fluid trajec- 
tories. A sketch of the proof is given in [ 12, 281. Analyticity for all times was proved 
in [2]. It is shown in this reference that if the (periodic) initial condition u,,(x) can be 
continued as an analytic function in a strip ] Im x( < d,, then, for any real time, the 
solution remains analytic in some strip ] Im x ] < o(t) which does not go to zero faster 
than an exponential of an exponential. Here o(r) is actually a lower bound for the 
analyticity strip d(t). As we shall now see, the numerical evidence is that the decrease 
of d(t) is actually exponential. 

For the numerical experiment, we have chosen the initial condition (proposed in 
1251) 

u, = -siny- sin 2y, u2 = sin x + sin 2x. (5.2) 

Figure 11 shows the contours of the initial vorticity. Deterministic initial conditions, 

FIG. 11. Two-dimensional Euler equation. Vorticity contours of initial condition 
denote maximum and minimum, respectively. 

(5.2); H and L 
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rather than random ones (as in [3,8, 10, 18, 22]), were chosen because we are here 
basically interested in the dynamics and analytical structure of individual 
realizations. 

The calculation was performed with (256)2 Fourier modes (maximum wavenumber 
k max = 128 after circular truncation). No dealiasing was made. For the temporal 
scheme we chose a stabilized leapfrog with a time step At = 2 x 10-3. 

Figure 12 shows the angle-averaged energy spectrum 

0 

In E 

-20 

-40 

K<k<K+l 
(5.3) 

-60 I 
0 25 50 75 100 

K 

FIG. 12. Angle-averaged energy spectrum of the two-dimensional Euler equation in linear-log scales 
at equally spaced times between t = 0.2 and 2.2 in steps of 0.4 for initial condition (5.2). 
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in linear-log scales up to t = 2.2. The solid lines are least-square fits to the logarithm 
of the energy spectrum, assuming the functional form 

E(K) = C(t) K-a(f)e-s(f)K. (5.4) 

An exponential decay of the energy spectrum is visible at large wavenumbers; the 
small oscillations come from truncation and aliasing errors’ and also from inter- 
ferences of singularities. 

The time evolution of the logarithmic decrement is shown in Fig. 13 for t ,< 2.2. 
Clearly, d(t) decays exponentially. The characteristic time of decay (here near 0.5) 
provides a typical dynamical time scale for the inviscid problem. This exponential is 
almost insensitive to the precise choice of the fitting range of wavenumbers. Figure 13 
corresponds to a fit in the range 8 < k < 100. At times t > 2.2, 6 becomes much 
smaller than the mesh size and the smallest scales cannot be safely resolved. The 
logarithmic decrement 8(t) obtained in this way gives a numerical estimate of the 
width of the analyticity strip d(t). Indeed, if the analyticity strip were larger than s(t), 
the energy spectrum would decrease faster than ePS(‘)“, in contradiction with the 
observed behavior (5.4). 

The vorticity contours at t = 2 are shown in Fig. 14. Note the formation of thin 
layers of high vorticity gradient which probably reflect the existence of nearby 
complex singularities. The formation of such layers, across which the vorticity is 

0. 

In6 

-1.0 

~2.0 

-3.0 

-L.O 

-5.0 

FIG. 13. Logarithmic decrement versus time of the two-dimensional Euler equation. The dashed line 
shows the mesh size (2n/256). 
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FIG. 14. Two-dimensional Euler equation. Vorticity contours at time t = 2. 

nearly discontinuous, was predicted by Saffman [29] using a vorticity advection 
argument. Actual vorticity discontinuities should produce a k-4 energy spectrum. We 
have not observed any significant kp4 range; recent simulations at higher resolution 
(5 1 22) [ 51 have not substantially changed this situation. 

As for an enstrophy cascade range, possibly following a kw3 law [4,21] or a 
steeper law [3], it is very doubtful that it can be observed without performing some 
kind of statistical averaging which requires a driving process and very long 
integration times. 

VI. FURTHER APPLICATIONS 

The method presented here has been applied recently to other nonlinear evolution 
equations. In [ 13, 251 evidence is given suggesting regularity for all times of the 
inviscid MHD flow in two dimensions. In contrast with the Euler equation, the MHD 
equations do not conserve the vorticity; therefore the Wolibner [ 3 1 ] proof of global 
regularity is inapplicable. For the cubic Schrodinger equation in two dimensions, 
blow-up problems and the corresponding scaling laws are considered in [30]; in 
particular, evidence for blow up is obtained for periodic boundary conditions. The 
three-dimensional Euler equation with the Taylor-Green vortex as initial condition 
has been integrated numerically using 2563 Fourier modes in [6]; an exponential 
decrease of the width of the analyticity strip is observed during the period of time 
when the computation is reliable. However, as pointed out in [6], this behavior may 
be transient. A higher resolution seems necessary in this case to safely decide whether 
or not the three-dimensional Euler equation develops a real singularity. 
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